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Abstract 

A flat space-time time-like curve is considered from the point of view of an instantaneous 
comoving inertial observer. In the context of the 'vierbein' formalism a projection 
operator is introduced, able to project 3-vectors, belonging to the 3-space of the comoving 
observer, out of space-time 4-vectors. The motion of an accelerated particle relative to the 
comoving inertial frame is briefly reviewed by means of the projection technique, and the 
three space-like components of the Frenet-Serret tetrad are thus projected, and their 
motion relative to the comoving observer neatly stated. Finally, the physical identification 
of the normals and the curvatures obtains in terms of three-dimensional kinematics as seen 
by the instantaneous comoving observer. 

1. Introduction 

In a previous paper (Krause, 1974), hereafter referred to as I, some kine- 
matic features of the 'vierbein' formalism were discussed and the process of 
Frenet-Serret transport was introduced. Space-time differential geometry associ- 
ates with each event of a time-like world-line three particularly interesting kinds 
of orthonormal tetrads; namely, the instantaneous comoving free-falling tetrads, 
the Fermi-Walker transported tetrads, and the Frenet-Serret tetrad. In this 
paper we shall mainly be interested in this last structure, which we will think 
of as a local reference frame of some accelerated observer. Accordingly, an 
interesting problem in relativistic kinematics is to elucidate the physical mean- 
ing of the curvatures and the normals of a given time-like world-line.$ (By 
'physical meaning' we here understand how we can describe these four- 

~" Work sponsored by a post-doctoral fellowship of the University of California- 
Universidad de Chile Cooperative Program (Ford Foundation Grant). 

$ This problem seems to have been neglected in the literature. To this author's knowl- 
edge there is one exception, however. Synge has thrown much light on this question, 
being able to obtain the physical identification of the normals and the curvatures of the 
world-line of an observer on the earth in the general relativistic context; cf. Synge (1964). 
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dimensional geometric structures in terms of everyday three-dimensional 
kinematics.) 

It is well established today that the best (if not the only) approach to rela- 
tivity theory is attained by considering it as geometry of absolute space-time. 
Thus, the principle of general relativity requires that the laws of physics, deal- 
ing with events occurring in space in the course of time, have to conform to 
this geometric approach in a generally covariant manner. Furthermore, because 
of the lack of a universal Newtonian time, relativity theory imposes, in a very 
fundamental way, the four-dimensional description of material phenomena. 
Certainly, the four-dimensional formulation, besides being the most elegant 
way of expressing the theory in mathematical language, is the only known 
way of fully developing the idea that space and time are intimately melt form- 
ing a Riemannian 4-space. As geometers, we have to emphasise this point as 
strongly as possible. However, as physicists, we have to stress at every step of 
our analysis the deep difference between space and time, which becomes some- 
what concealed by the four-dimensional tensor language of geometry. There- 
fore, in every relativistic problem whose geometric solution we have been 
lucky to grasp, we should be able to introduce a 'reasonable' three-dimensional 
point of view, somehow leading to a description in terms of 'ordinary' con- 
cepts, so we can grasp the physical content of the theory, at least, locally. It is 
in accordance with this spirit of real physical understanding that we want to 
elucidate in this paper what are the physical observables hidden behind the 
above-mentioned Frenet-Serret four-dimensional structure. 

In the present work we develop our theme in the context of the special 
theory of relativity since, clearly, the 'vierbein' projection manipulations can 
be more neatly understood in flat space-time. In general relativity the physical 
interpretation one gets of the Frenet-Serret structure is not so 'neat' because 
of the unavoidable approximations needed in curved space-time. Of course, 
the whole formalism discussed in this paper still works in the general theory, 
but becomes much more cumbersome to handle. 

2. The Frenet-Serret Observer and the Instantaneous 
Comoving Inertial Observer 

Let us visualise a given time-like curve in Minkowski 4-space. To guide our 
thoughts we think of it as the history of an arbitrary accelerated observer O on 
whose 'weltanschau' we are interested in. The given curve has parametric 
equations, say X u = Xu(z), relative to some set (X u} of space-time rectangular 
Cartesian coordinates. The parameter ~- denotes O's proper time. We denote 
by uU and gu the 4-velocity and the 4-acceleration of O, respectively. Let us 
now introduce the Frenet-Serret tetrad {7~v)(T)} on the curve and assume that 
O uses this tetrad as a local reference frame in space-time; i.e. we consider O as 
a Frenet-Serret observer. In effect, as was discussed in paper I, from the point 
of view of kinematics the Frenet-Serret tetrad is a particularly interesting 
object, for it affords the space-time representation of the comoving local frame 
pertaining to some arbitrarily moving (although not arbitrarily spinning) 
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observer. Indeed, once the motion of  O is given, that is, once the time-like 
world-line is given, the spin of  the Frenet-Serret triad {3'~i)} is well defined 
along the curve via the Frenet-Serret formulas. 

In order to understand the behaviour of  the Frenet-Serret observer, it is use- 
ful to introduce an instantaneous comoving inertial observer. We denote by 
Oo0-) that inertial observer who, at O's proper time ~-, has the same space-time 
position and the same 4-velocity, relative to (X"}, as O has; i.e. the history of  
Oo0-) is precisely that straight world-line which is tangent to O at the event 
X~(r). This line is given by 

Xo"(%, r) = x"(r )  + (% - r )u" ( r )  (2.1) 

where ro is O's proper time. The proper time r of  observer O appears in 
XoU0-o, r) as a parameter labelling, which one of  the infinitely many comoving 
free observers we are considering, for, clearly, there is a different one for each 
value of  ~. We see that, when r o = T, both observers are in instantaneous coinci- 
dence, have the same 4-velocity, and, moreover, for all values of  %, we have 
go ~ = (32Xu /3ro 2) = 0, as required. 

Next we consider an orthonormal tetrad {a~v)} attached to Oo's world-line. 
Without lost of  generality, we assume that when ~o = r the inertial tetrad {~v)} 
and the Frenet-Serret tetrad {7~v)} are instantaneously codirectional. Thus, 
these tetrads are the solutions of  the following initial value problems: 

(O/aTo)a~v) = 0 (2.2) 
) u 

(d/dT)7~v) = C~(vxi 0")7(X)(7) (2.3) 

a~u) = 3'~v) (r) (2.4) 

v~o)('O = c -1 u " ( r )  (2.5) 

The curvature matrix elements C~)t, namely, the Frenet-Serret formulas, are 
given explicitly in paper I; cf equation (3.1) of  that paper. It must be borne in 

mind that both reference tetrads are in coincidence only at the event Xu(r), 
for their laws of  motion are quite different. For the sake of  having a handy 
notation (and saving a lot of  wording) we define 

while 

(3/3"ro)')'~v) (r) = lira (313ro)O~(,,) = 0 (2.6) 
TO-+T 

;[~v)(T) = (d/dT)7~v)(7") (2.7) 

This notation automatically takes care of  the different behaviour of  both tet- 
rads, and throws light on what case we are considering. With the above remark 
there is no danger of  confusion and we shall write 3'[v)(r), instead of  e~),  
henceforth. 
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Some useful purely formal manipulations follow. As is well known, any 
tensor may be resolved into components along an orthonormal tetrad. Thus, 
for instance, given any vector field Vu(X), we define 

= [xo( o, (2 .8)  

along the world-line Oo(r), and also 

V( ' ) ( r )  = 7(v)(v)V u [X(7)I (2.9) 

along the world-line O. Of course, we want to interpret the inertial triad 
{cz~})} = {7~})(T)} as a frame supporting a system of  rectangular Cartesian coor- 
dinates spanned over the physical 3-space of  the inertial observer Oo. As a 
matter  of  fact, we want to consider the space components V(O(ro, r), i = t, 2, 
3, of  equation (2.8), as the Cartesian components of  a 3-vector V(To, ~') belong- 
ing to Euclidean 3-space of  observer Oo(~'), at time %. In other words, we want 
to be able to write the usual linear combination 

V(r  o, r)  = Y (i)(r) V(O(ro, r) (2.1 O) 

where {y(i)(r)} denotes a Cartesian basis spanned over Oo(r) 's  space. Clearly, 
this basis remains fixed from the point of  view of the comoving free observer; 
i.e. we require 

(O/3zo)Y(i) 0-) = 0 (2.11) 

Furthermore, for the sake of  handiness we shall assume it is a right-handed 
orthonormal basis. Thus, we introduce the usual 'dot '  and 'cross' products for 
3-vectors, such that 

Y(i) • Y ( i )  = 8( i ) ( j )  (2 .12)  

and 

Y(i) x Y(j) = e(i) (j) (x)Y(x) (2.13) 

From equations (2.8) and (2.10), we observe that a projection operator can 
be introduced in the 'vierbein' formalism. This we do by defining the object 

¥. : v(i)v  (i)(O (2.14) 

so, that equation (2.10) can be written as 

V('ro, ~') = Y, ( r )V g [Xo(%, ~')] (2 . t5)  

This operator is able to produce 3-vectors, belonging to the physical space of 
Oo('c), at proper time %, out of  4-vectors defined on the world-line of  O0(z). 
It is a mixed object: it behaves as a 3-vector under space rotations of  the 
Cartesian basis {5"(0 (~-)}, and as a 4-vector under Lorentz transformations of  
the space-time system of coordinates {Xu}. The introduction of  this projection 
operator turns out to be very helpful, for it brings the kinematics of  the tetrad 
formalism to an intuitive compact  form, allowing the introduction of the usual 
notation of  ordinary vector analysis. For instance, if we adopt the represen- 
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tation 7(D(r) = (1, O, 0), 3'(2)(r) = (0, 1, 0), ')'(3)(T) = (0,  O, t), for the 
Cartesian basis, then we have the simple representation yu(r) = (7 (1)(r), 
7(2)(r), 7(3)(r)) for the projection operator. The algebra of Yu is quite simple. 
Some interesting properties follow. 

First, we observe that when projecting the 4-velocity of Oo(r) itself, we get 

Vu(r)uU(r ) = 0 (2.16) 

so that, as a 4-vector, the projection operator is always orthogonal to the 4- 
velocity of the observer to whom it belongs. Next, let us consider the 4-tensor 
obtained by forming the 3-scalar Yu .Yr. One easily proves that 

Y = ~(°)¢r~"A° )¢r'~ = - 7~°)(r) (2.17) Yu" v l u  ~ J-v v J - ~ u v  

where 7(°v)(r) is the well-known projection tensor orthogonal to the 4-velocity 
uU(r) = eT~o)(r), and where zluv denotes the Minkowski metric. (We are using 
signature ( -2) ,  to be sure.) Thus, the projection operator corresponds to a 
factorisation (in the sense of the 3-scalar product) of the usual projection 
tensor. Another property we will need presently is the following 3-tensor (or 
dyadic) obtained from Yu(r): 

v**(r)v"(r )  : - ~ ( o ( j ) v ( o  ( r )v( / ) (~)  (2.18) 

From equations (2.6) and (2,11), we see that, as a 4-vector, the projection 
operator is parallel transported along the world-line Oo(r), i.e. we have 

(a/Oro)~'u(r) = 0 (2.19) 

Finally, we observe that equation (2.14) can be inverted, to read 

Y(i)(r) = yu(r)7~o(r) (2.20) 

This last equation amounts to adopt a more abstract, although equivalent, 
point of view: We consider the projection operator as a fundamental geometric 
object, and then the Cartesian basis spanning the physical space of the observer 
becomes just the projection of the triad on this space. 

3. Motion o f  the Frenet-Serret Observer Relative 
to the Comoving Inertial Frame 

As an instance of how the projection technique works, in this section we 
discuss the motion of the accelerated observer as seen by the instantaneous 
comoving free observer. Although the results are well known from elementary 
relativistic kinematics, we will briefly discuss the issue here for the sake of 
illustrating the use of the shorthand tool of the Yu operator, while presenting 
some conclusions needed in the forthcoming section. 

Let now r '  be any instant of O's proper time. We define, quite generally, 
the 4-vector of relative position in space-time: 

# t 
AX (r ,  To, r) = xg(r ') - Xo~(ro, r) (3.1) 
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where r O is any instant of  proper time of Oo. In this equation we are consider- 
ing two instants of O's proper time; namely, 7" which is considered as fixed, 
and r r whicil plays the role of  the proper time variable. In particular, given r 
and To, we think over that value of r '  for which the relative position vector is 
orthogonal to the 4-velocity of  00(7-); that is 

uu(r)gXXu( r', 7-0, 7-) = 0 (3.2) 

Here we have an equation for expressing this particular value for r '  as a function 
of r o and r; say r '  = 0 (%,  ~'). After a little thought, we see that we must have 
lim P(7-o, 7-) = T. So we define the orthogonal position 4-vector as 

TO-'~ T 

rU(%, v) = AXU(p, r0, 7-) (3.3) 

It is helpful to realise the meaning of these space-time position vectors 2xX u and 
r ,  from the point of  view of  the usual parametric descriptions of time-like 
curves in special relativity. In effect, for given 7" 0 and T, the 4-vector AXU 
represents the history of O relative to the inertial observer Oo(r) as the proper 
time of O elapses; while, since 

uu(r)rU(ro, r)  = 0 (3.4) 

for given r, the 4-vector rU represents this same history as the proper time ~'o 
of  0o(7-) elapses. Hence, both  4-vectors correspond to different parametris- 
ations of  the same curve relative to Oo(r) 's  frame: AXu gives the parametric 
equations in terms of proper time along the curve as parameter, while r u uses 
the coordinate time as parameter (for the proper time of  an inertial observer is 
usually taken as his time coordinate). 

We now project rU onto the physical space of  Oo; i.e. we define 

r (%,  r)  = Yu(7-)rU(ro, r) (3.5) 

This 3-vector represents the path of  the accelerated observer in the 3-space of 
that free observer who, when ro = r, is comoving and coinciding with him. 
Again, in equation (3.5), TO is the time variable, while 7- figures as a fixed para- 
meter. We can say that r gives the position O 'now' ,  from the point o f  view of 
Oo(T). As % elapses, O moves relative to Oo(~') with a 3-velocity given by 

V(ro, r) = yu(7-)(~/Oro)rU(ro, 7-) (3.6) 

where equation (2.6) has been used. Therefore, from equations (2.1), (2.16), 
(3 . t )  and (3.3), one readily obtains 

v(%, r) = (~p/~ro)Vu(r)uU(o) (3.7) 
We observe, as is well known from relativistic kinematics, that the projection 
of the 4-velocity, i.e. Yu('r)uU(p), is not the 3-velocity The meaning of the 
relativistic factor Op/Oro is well known: it corresponds to the effect of  time 
dilation between both observers. At any rate, it is easy to compute this factor 
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in the present formalism. This we do, if only for the sake of  showing the 
handiness of the projection approach. If we square equation (3.7), we get 

v 2 = (0`0/0%)2{[~/(°)(7.)uU(`0)12 - c 2 } (3.8) 

On the other hand, equation (3.4) holds for all 7-0, and therefore, upon partial 
differentiation with respect to 7-o, it gives 

u~(r){(O`0/O%)uU(`0) - u~(r))  = 0 (3.9) 

Thus, from equations (3.8) and (3.9), we obtain the well-known expression: 

0,0/07. 0 = [ l - -  c - 2 g 2 ( 7 - 0 ,  T)] 1/2 (3. t 0) 

We next calculate, using the same method, the 3-acceleration of O relative 
to Oo, presenting the discussion in a very sketchy way. The physical 3- 
acceleration is, of  course, 

a(%, r) = ( 8 /0% )v(ro, 7-) 

= Yu(r)(O/Oro)2rU(ro, 7.) (3.11) 

where 

(0/0%)2r"(7.o, 7.) = (0`0/0%)2g"6o) - c-2(0`0/07.o)-1v, au u (`0) (3.12) 

Hence, if we introduce the projection of the 4-acceleration, say 

g(ro, 7-) = Yu(7.)gU(`0) (3.13) 

we get 

1/0`0  -2 
a(7o, 7-) = (0`0/0%)2g- TZ i~ -o  ] (v .g)v  (3.14) 

and thus, after some manipulation, we obtain 

{ OP ~-4  [a + -j~2 v x (v x a)] (3.15) 
g(%'7.)-- L 

This is the well-known formula for the space components of the 4-acceleration 
relative to an inertial frame. If we now define 

g(7.) = yu(7-)gU(7-) (3.16) 

we see that 

g ( r )=  lim g(7"o,r) = lira a(7-0,7. ) (3. t7)  
TO-'~ T TO-~7" 

so that g(7.) represents the physical 3-acceleration of O relative to Oo(r) at the 
instant r 0 = r when both observers are coinciding at relative rest. 
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Finally, let us study the motion of the Frenet-Serret triad {7~i)0-)} from the 
point of view of Oo0-). We define, for any value of ~'o, 

V(i)(ro, ~') = Y~ (7)7~.)Co) (3. I 8) 

for i = 1, 2, 3. These 3-vectors represent the components of the Frenet-Serret 
triad in the physical space of Oo(r), at time to. We have, in general 

so that this moving triad does not look orthogonal to Oo0-), unless when 
ro = ~'. We next define 

"~(0(r) = lim "f(i)(~-o,r)='f~0-)7~})(r) (3.20) 
TO--> T 

and 

(3/3;o)Y(i)(r)  = lim (31O'ro)y(i)('Co, ~) (3.21) 
TO--> T 

We observe that the basis {Y(O0-)} corresponds precisely to the local frame 
used by O which, at time ~'o = ~', is instantaneously codirectional with the 
frame used by Oo, although moving relative to it. Indeed, we have, according 
to equations (3.18) and (3.21), 

(3/3ro)Y(i)O') = lim (3p/3"ro)7~(r)'~ffi)(p) (3.22) 
T O--~ T 

But, from the Frenet-Serret formulas, one readily obtains 

~ )  (1) ~ + (3.23) = ~(i) C(1)7(o) e(i)(J)(k) co(k)'Y(j)~ 

where e(i)( j ) (k  ) is the three-dimensional permutation symbol, and where we 
have introduced, for later convenience, the quantities 

co O) = -C(3), co (2) = O, co (B) = -C(2) (3.24) 

with C(i), i = i, 2, 3, the three curvatures of the curve. Therefore, defining the 
rotation 3wector 

and, in particular, 

7) : Y(o (°O)  (3.25) 

txl(r) = tim Ixl(ro, r) = Y(i)(r)co(i)(r) (3.26) 
TO+-~" T 

taking into account equations (2.16), (3.1 O) and (3.23), we obtain 

(a/aro)Y(o(r)  = I~ (r) x ~t(i)(r) (3.27) 

namely, the well-known result from elementary kinematics. 
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4. Physical Identification o f  the Normals and Curvatures 

After these preliminaries, we now tackle the problem of the description of 
the normals and curvatures of the time-like curve O in terms of physical observ- 
ables. From the Frenet-Serret formulas it is immediate that 

~[~a) = I g I - l g  u (4.1) 

and therefore, 

Co) = c -11gl (4.2) 

with tgl denoting the Minkowskian norm of the 4-acceleration, i.e. 

[g 12 = --gug u (4.3) 

Thus, we know 7~t) and CO) in terms o fg  u. Furthermore, since 

(d/d~') igl = - G v ~ )  (4.4) 

we obtain 

g# = CC~l)";'~to) -- gu')'~l)')'ffl) + cC(1)C(2)~'~2) (4.5) 

If we now introduce the projection tensor 7~),  given by 

7~)  = r/~u + 75)711) (4.6) 

we may define the (O1).projector as the contracted product of 7~o~ and 3'~1~, 
namely 

: uxTu = 7~[) + 7~) - r~ "v (4.7) "Y~gl) 7(0) ( l )h  

which is the projector onto the two-dimensional flat subspace orthogonal to 
7~o) and 7~), simultaneously. Hence, projecting ~u onto (0 I), only the 3'~2) 
term survives: 

= cCv )C( )vS ) (4.8) 

and, hence 

3'~l)dtzd~ - ~2,"2 ,.2 (4.9) - - ~  ~ ( 1 ) ~ . ( 2 )  

Thus, having found 3'~1) and C(D in terms o fg  u, we can find 7h)  and 6'(2) in 
terms ofg  ~ and ~u. We could continue the analysis along these lines; however, 
the results become rather cumbersome and are not very illuminating for the 
purposes of physical identification. It is here that the y u projection technique 
will give us some benefit. 

Using the factorisation of the projector tensor qe~Zo~, we have 

'),~t~l)~v = "/t*k "le - O) x-Y~gV (4.10) 

If we now define the limit 

go(r) = (~/3ro)g(r) = lim (3/3ro)g(7o, r) (4.11) 
T O--> T 
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we easily find 

~o(r) = "r,(r)~"(r) (4.12) 

Clearly, go(r) represents the time rate of change of the physical acceleration of 
O, from the point of view of Oo(r), at the very instant of coincidence ro = r. 
So equation (4.8) can be written as 

-01  ux + 7f,)7~1)) Yx. go = cC0)C(2)7~2) (4.13) 

and therefore, contracting this equation with 7(2)u, one obtains 

Y(2). go = cCo)C(2) (4.14) 

Furthermore, equations (4.13) and (4.14), we also get 

V # ,  go + ~l)~e( 1 )"  go = -- ')'~2 )Y( 2 )" go (4.15) 

and hence, using the property stated in equation (2.18), the following equation 
results: 

go = goO) Y(1) + go(Z)Y(2) (4.16) 

where, clearly, we have written 

g~) = Y(i)" go (4.17) 

Next, from equations (4.1) and (4.2), we easily obtain 

YuT~l) = Ig[-1Yug u = Igl-lg =Y(I) (4.18) 

i.e. 

g = Igl~a) (4.19) 

which gives the physical identification of y(1), namely, o f the first normal, and 

g. g = lg 12 = e2C~I) (4.20) 

which establishes the physical meaning of the first curvature CO). Moreover, 
in equations (4. t 6) we have found 

~;3) = g (3) -g  = 0 (4.21) 

and therefore, given the directions of g and go, the direction of y(3 ) is well 
determined (up to a sign). We take 

Y(3~ = Ig x gol-~g x go (4.22) 

which states the identification of the third normal Y(3) from the point of view 
of Oo(r). But then the direction of y(2) has to be such as to have a right-handed 
Cartesian basis, i.e. 

"1"(2) = "~'(3) xY(1) = (lgllg x go I)-1 (g x go) x g (4.23) 

In this manner we have found the complete kinematical identification of the 
Frenet-Serret triad in the physical space of the instantaneous comoving inertial 
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observer: equations (4.19), (4.22) and (4.23) are stating the physical meaning 
of the three space-time normals of  a time-like world-line. Also the meaning of 
the first curvature is given in equation (4.20) as 

C(1) = c - l l g l  (4.24) 

In order to physically interpret the two torsions (second and third curva- 
tures) of  the world-line, we now study the rotation of the Frenet-Serret triad 
{7{}) } from the point of  view of Oo(r). This can be easily done by considering 
equation (3.27). We see the case i = I first. Using our result in equation (4.19), 
we have 

(b/O7o)Y(t) = to x YO) = (5 /OTo) [g r  1 

which can be written as 

Igxgol 
igt2 Y(2) = 00(3)Y(2) - co(2)y(3) 

Thus, we have 

toxg 
g =  [g[ (4.25) 

(4.26) 

co (3) = -C(2 )  = ]g I-2tg x got (4.27) 

and also 00 (2) = 0 (which we already knew). Next we consider the case i = 3. 
We have 

g x go to x (g x go) 
(O/OT0) '~ (3 )  = to  X ~ ( 3 )  = (O/OTO) [g X g0 I [g X g0l (4.28) 

After some manipulation this can be written as 

Ig lg . (go  x fro) 
co (l) = -6"(3) = Ig x go 12 (4.29) 

Therefore, the rotation vector of  the Frenet-Serret triad in the physical space 
of  the comoving inertial observer is given by 

g x go [g. (go x g'o)] g 
t o =  Igl 2 + I g x ~ o t  (4.30) 

5. Conclusion 

We emphasise the purely kinematic origin of  the Frenet-Serret precession by 
noting that nothing has been said about the cause of the physical accelerations. 
We also remark on the fact that this effect takes place between two observers 
which are instantaneously at rest, one being accelerated relative to the other: 
the Cartesian frame of the accelerated observer precesses relative to the inertial 
comoving fi'ame because, according to equations (4.19) and (4.22), the Frenet- 
Serret observer permanently orients his basis in the direction of the accelerations 
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he feels. Thus,  for instance,  the m o o n  evolves under  Frenet -Serre t  t ransport  in 
its m o t i o n  a round the  earth.  
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